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applications: what
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Yann LeCun’s cake

- cake: unsupervised learning
- 1cing: supervised learning

- cherry: reinforcement learning




unsupervised learning
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Lorem ipsum dolor sit amet, consectetur adipiscing
elit. Cras quis cursus purus. Aliquam nisl purus,
posuere id venenatis et, posuere non leo. Proin
commodo, arcu vel commodo pellentesque, erat
sapien mattis justo, nec semper urna lacus vel nisi.
Nullam nisi odio, interdum 1d dictum vel, ultricies
quis leo. Aliquam sed porttitor lacus. Suspendisse
vulputate, leo vitae tempus accumsan, justo ex
hendrerit magna, vel suscipit eros purus non magna.
Vestibulum ac interdum ipsum. Sed nibh sem,
pharetra euismod purus non, finibus mattis sapien.
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unsupervised (?) learning
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supervised learning
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supervised learning
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reinforcement learning
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optimal control /
remforcement learning
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reinforcement learning
-“o1ven”’ r,s,a,r’,s’,a, ..

-learn “good” s — a




Question

-Can you formulate
supervised learning as
reinforcement learning?




supervised as reinforcement?

-reward O for incorrect, reward 1 for correct
- beyond binary classification?

-reward deterministic

- next state random




Question

-Why 1s the Sarsa
algorithm called Sarsa?




reinforcement learning
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einforcement learning
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Markov property

-5 1s enough




Make choices?

no yes
. MDP
Completely yEs Markov Chain Markov Decision Process
observable? HMM POMDP
no Hidden Markov Model | Partially Observable MDP




usual RL problem elaboration
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‘1nto the future (episodic or ongoing)
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1 1 1
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Question

- How do we 1ncentivize efficiency?

start goal




negative reward at each time step




discounted rewards
2 yhr




average rate of reward
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value functions
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Question

-Does a value function specity a policy
(1f you want to maximize return)?
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trick question?
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Question

-Does a value function specity a policy
(1f you want to maximize return)?
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environment dynamics
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Going “right
from “start,”
where will

you be next?

start

ogoal




model
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learning and acting




learn model of dynamics

-from experience

- difficulty varies




learn value function(s) with planning

-assuming we have the environment
dynamics or a good model already
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planning

Start
estimating

q(s,a)!
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Start
estimating

v(s)!
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planning




connections
- Dijkstra’s algorithm
-A* algorithm

-minimax search
‘two-player games not a problem

-Monte Carlo tree search




roll-outs




roll-outs




everything can be stochastic




stochastic s’

“1cy pond”

20% chance you
“slip” and go
perpendicular to
your intent

-1 -1 -1 -1
-1 -1 -1 -1
start | -1 -1 | goal
-10 | -10 | -10 | -10




stochastic r’

multi-armed
bandit




exploration vs. exploitation

-£-greedy policy
-usually do what looks best
£ of the time, choose random action




Question

- How does randomness atfect
m, v, and g?
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Question

- How does randomness atfect
m, v, and g?
m:P(als)
v:s > E)r
‘q:s,a>E),r




model-free: Monte Carlo returns
v(s) =7
-keep track and average

-like “planning” from
experienced “roll-outs”




non-stationarity

-v(s) changes over time!




moving average

-new mean = old mean + a(new sample - old mean)




moving average

-new mean = old mean + a(new sample - old mean)
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Question

-What’s the difference between
v(s) and v(s")?
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Question

-What’s the difference between
v(s) and v(s")?

/

a Tr




Bellman equation
v(s) =r"+v(s")




Bellman equation
v(s) =r"+v(s")




Bellman equation
v(s) =r"+v(s")

[dynamic programming |




Bellman equation
v(s) =r"+v(s")

[dynamic programming |




temporal difference (TD)
v(s) =r"+v(s")

0=27r"+v(s") —v(s)
‘“new sample”: v’ + v(s’)
“old mean”: v(s)




Q-learning

-new q(s,a) = q(s,a) + a(r’ + ymaxq(s',a) — q(s,a))
a




on-policy / off-policy




estimate v, q

-wi1th a deep neural network




back to the 7

-parameterize w directly

-update based on how well 1t works
-REINFORCE

- REward Increment = Nonnegative Factor times Offset
Reinforcement times Characteristic Eligibility




policy gradient
-Vlog(m(als))




actor-critic

7T 18 the actor
- 18 the critic

-train m by policy gradient to
encourage actions that work out
better than v expected




applications: how




Backgammon




TD-Gammon (1992)

- s 1S custom features

- v with shallow neural net

-7 1s 1 for a win, O otherwise

. TD(A)
- eligibility traces

- self-play

- shallow forward search




Atari




DQN (2015)

- s 18 four frames of video

- ¢ with deep convolutional neural net
- r 1s 1 1f score increases, -1 if decreases, O otherwise

- Q-learning
- usually-frozen target network
- clipping update size etc.

- g£-greedy

- experience replay
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evolution (2006)

.S 1s custom features

-r has a simple parameterization
-evaluate by final score

-cross-entropy method







AlphaGo (2016)

s 1s custom features over geometry
* big and small variants

ng; with deep convolutional neural net, supervised training

- Tronout With smaller convolutional neural net, supervised training

r 1s 1 for a win, -1 for a loss, 0 otherwise

gy 18 s refined with policy gradient peer-play reinforcement
learning

- v with deep convolutional neural net, trained based on my; games

- asynchronous policy and value Monte Carlo tree search
- expand tree with mg;

- evaluate positions with blend of v and m,.,;;,,,; rollouts




AlphaGo Zero (2017)

- s 1s simple features over time and geometry

- 1, v with deep residual convolutional neural net
- r1s 1 for a win, -1 for a loss, 0 otherwise

- Monte Carlo tree search for self-play training and play




onward




Neural Architecture Search (NAS)

- policy gradient where the actions design a neural net

- reward 1s designed net’s validation set performance
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Figure 5. Accuracy versus computational demand (left) and number of parameters (right) across top performing published CNN architec-
tures on ImageNet 2012 ILSVRC challenge prediction task. Computational demand is measured in the number of floating-point multiply-
add operations to process a single image. Black circles indicate previously published work and red squares highlight our proposed models.
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A Deep Reinforcement Learning Chatbot

49v1 [cs.CL] 7 Sep 2017

Iulian V. Serban, Chinnadhurai Sankar, Mathieu Germain, Saizheng Zhang, Zhouhan Lin,
Sandeep Subramanian, Taesup Kim, Michael Pieper, Sarath Chandar, Nan Rosemary Ke,
Sai Mudumba, Alexandre de Brebisson Jose M. R. Sotelo, Dendi Suhubdy,

Vincent Michalski, Alexandre Nguyen, Joelle Pineau and Yoshua Bengio
Montreal Institute for Learning Algorithms, Montreal, Quebec, Canada

Abstract

We present MILABOT: a deep reinforcement learning chatbot developed by the
Montreal Institute for Learning Algorithms (MILA) for the Amazon Alexa Prize
competition. MILABOT is capable of conversing with humans on popular small
talk topics through both speech and text. The system consists of an ensemble of
natural language generation and retrieval models, including template-based models,
bag-of-words models, sequence-to-sequence neural network and latent variable
neural network models. By applying reinforcement learning to crowdsourced data
and real-world user interactions, the system has been trained to select an appropriate
response from the models in its ensemble. The system has been evaluated through
A/B testing with real-world users, where it performed significantly better than
competing systems. Due to its machine learning architecture, the system is likely
to improve with additional data.
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Emergence of Grounded Compositional Language in Multi-Agent Populations

Igor Mordatch ! Pieter Abbeel ! 2

Abstract

By capturing statistical patterns in large cor-
pora, machine learning has enabled significant
advances in natural language processing, includ-
ing in machine translation, question answering,
and sentiment analysis. However, for agents to
intelligently interact with humans, simply cap-
turing the statistical patterns is insufficient. In
this paper we investigate if, and how, grounded
compositional language can emerge as a means
to achieve goals in multi-agent populations. To-
wards this end, we propose a multi-agent learn-
ing environment and learning methods that bring
about emergence of a basic compositional lan-
guage. This language is represented as streams of
abstract discrete symbols uttered by agents over
time, but nonetheless has a coherent structure
that possesses a defined vocabulary and syntax.
We also observe emergence of non-verbal com-
munication such as pointing and guiding when
language communication is unavailable.

can capture structural and statistical relationships in lan-
guage, but they do not capture its functional aspects, or that
language happens for purposes of successful coordination
between humans. Evaluating success of such imitation-
based approaches on the basis of linguistic plausibility also
presents challenges of ambiguity and requirement of hu-
man involvement.

Recently there has been a surge of renewed interest in the
pragmatic aspects of language use and it is also the focus
of our work. We adopt a view of (Gauthier & Mordatch,
2016) that an agent possesses an understanding of language
when it can use language (along with other tools such as
non-verbal communication or physical acts) to accomplish
goals in its environment. This leads to evaluation criteria
that can be measured precisely and without human involve-
ment.

In this paper, we propose a physically-situated multi-agent
learning environment and learning methods that bring
about emergence of a basic compositional language. This
language is represented as streams of abstract discrete sym-
bols uttered by agents over time, but nonetheless has a co-
herent structure that possesses a defined vocabulary and




robot control




self-driving cars

‘1nterest

‘-results?







conclusion




(P)#dP  RL Algorithms Landscape
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network architectures for deep RL

- feature engineering can still matter

- 1f using pixels
- often simpler than state-of-the-art for supervised
- don’t pool away location information if you need it

- consider using multiple/auxiliary outputs
- consider phrasing regression as classification

- room for big advancements




the lure and limits of RL
-seems like Al (?)

-needs so much data




Question

- Should you use
reinforcement learning?




Thank you!




further resources

- planspace.org has these slides and links for all resources

- A Brief Survey of Deep Reinforcement Learning (paper)

- Karpathy’s Pong from Pixels (blog post)

- Reinforcement Learning: An Introduction (textbook)

- David Silver’s course (videos and slides)

- Deep Reinforcement Learning Bootcamp (videos, slides, and labs)
- OpenAl gym / baselines (software)

- National Go Center (physical place)

- Hack and Tell (fun meetup)




